电商门户 互联网+国家战略智库
·设为首页 ·我要投稿 ·生意宝 ·生意社 · 官方微信 ·专题
综合
SAAS  |跨境
钢铁网 上市|化塑
大宗品 工业|B2B
零售
B2C|海淘 时尚|珠宝
三农|母婴 女性|食品
美妆|百货 生鲜|鞋服
O2O
房产|教育 团购|餐饮
社区|家居 汽车|差旅
医疗|婚嫁 智能|影视
金融
电商金融 保险|支付
众筹|P2P 政策|企业
消费|理财 银行|征信
智库
报告|数据 法规库
研报|案例 企业库
百科|运营 论文库
人物
网红|专家 企业家
人才|培训 微博库
快评|明星 记者库
服务
法律|维权 淘宝|曝光
营销|物流 传媒|导航
思维|品牌 微商|会议
当前位置:首页 > > 互联网研究 > 分析:关于无人驾驶最新进展的深度研究

分析:关于无人驾驶最新进展的深度研究

http://www.100ec.cn  2017年04月19日09:40  中国电子商务研究中心 我要投稿 产品服务

  (中国电子商务研究中心讯)随着时间的推移,现代生活中人类越来越多的将机械物件交由机器系统来负责操控,移动出行用的汽车也不例外,从辅助驾驶的共同控制演变到无人驾驶的授权控制,考验的是机器系统能否更多去面对和适应外面的非机构化环境。

  从需求角度看,城市居民对于无人驾驶的诉求是存在的,却无法完全信任其安全可靠性。而在这中间,汽车制造商出于可能要承担法律责任问题限制自动驾驶的能力,导致高新科技面市的推迟。

  下面从无人驾驶技术的谈起,聊及城市居民对无人驾驶的需求,以及无人驾驶背后监管的重要性。

  一、什么是无人驾驶汽车

  无人驾驶汽车是室外轮式移动机器人的一种,它依靠人工智能、传感器、定位系统和导航系统的协同合作,让计算机在没有任何人类主动的操作下,自动安全地操作机动车辆,为人类的交通安全和效率带来全新体验。

  1、无人驾驶的演进,是一个人类逐步交出操控权、提高安全系数的过程;

  无人驾驶演进的阶段,其实是车辆操控权由人逐步交给计算机系统(如图1)的一个过程。

  也是安全度不断提高的一个过程(如图2,从被动安全到主动安全再到预防性安全)。

 

  结合业内目前产业普遍的预判周期,亿欧智库分析判断,部分无人驾驶预计会在2025年左右开始商业化,完全无人驾驶的商业化要等到2025年以后,而在此之前,ADAS会发挥重要作用。

  2、无人驾驶汽车涉及的技术=环境感知+定位导航+路径规划+决策控制;

  无人驾驶涉及的技术可以分为感知和决策两个层面,如下图3所示,一方面通过传感器数据获取局部数据(车辆自身及四周环境的数据),另一方面结合高精度地图和天气数据做到构建全局数据。数据综合起来将与决策层做协调应用,辅助系统做定位和导航,再结合算法模型做路径规划,控制车辆的转向和速度,实现驾驶自动化。决策层得到的数据部分也会反馈回高精度地图上。

  (1)环境感知层面=局部数据的感知+全局数据的辅助;

  车辆的感知功能主要是通过传感器来获取数据。传感器相当于无人驾驶汽车的眼睛,用来观察行驶时的动态变化,它是无人驾驶汽车中不可或缺的重要组成部分,常用的传感器包括有摄像头、激光雷达、超声波雷达、GPS、陀螺仪等,摄像头和激光雷达是最主要的两种传感器。

  a、摄像头

  目前,通过摄像头进行拍摄,在进行图像和视频识别,确定车辆前方环境,是无人驾驶汽车的主要感知途径,这也是很多无人驾驶公司的主要研发内容之一。摄像头作为一种已普遍应用的传感器,具有成本低廉、信息采集量大等特点。目前,车载摄像头主要分为单目和双目两种。

  单目摄像头,主要基于机器学习原理,利用大量数据进行训练,可以获取道路图像,提取车道线,对环境进行识别。尽管需要大量数据支持,且在恶劣光线条件下的表现不如双目摄像头,但其相对便宜的价格以及成熟的技术也获得了一部分公司的青睐。

  而双目摄像头则基于视差原理,可以在数据量不足的情况下,测定车辆前方环境(树木、行人、车辆、坑洞等),并且获得准确的距离数据,再辅以算法增强的调节来获取周围环境的景深,用以提供给无人驾驶系统进行车辆控制。

  b、雷达

  激光雷达的工作原理是通过发射单元将电脉冲变成光脉冲发射出去,接收单元再把从目标反射回来的光放冲还原成电脉冲,通过计算发送信号到接收信号的时间差,可以准确测量视场中物体轮廓边沿与设备间的相对距离,这些轮廓信息组成所谓的点云并绘制出3D环境地图,精度可达到厘米级别,如下图5。

  激光雷达的穿透距离远,高性能激光雷达可以实现200米范围内,精度高达厘米级的3D场景扫描重现,从而帮助无人驾驶系统实现提前行驶路线规划。目前来看,多线激光雷达很有可能是未来无人车的必备传感器,并且与高精度地图及驾驶系统核心算法紧密相关。目前,多线激光雷达还没有针对车规级的成熟量产方案,机械旋转式多线激光雷达虽然已在普遍应用,但体积较大且价格过于昂贵,更小型更低成本的纯固态激光雷达还未见到成熟产品。

  毫米波雷达、超声波雷达,除了激光雷达之外,近年来毫米波雷达和超声波雷达也逐渐成为无人驾驶汽车中,参与多传感器信息融合感知设备。其中,最为知名的例子就是特斯拉在其智能汽车中,完全没有使用激光雷达,而采用毫米波雷达+摄像头的方案。另外,类似博世、大陆这样的智能辅助驾驶巨头,也在毫米波雷达和超声波雷达这样成本较低传感器设备上,拥有比较深刻的技术积累和应用经验。而在国内,像行易道这样的毫米波雷达厂商,也在积极进行技术开发,追赶国际巨头水平。

  (2)无人驾驶定位与导航;

  无人驾驶通过定位技术准确感知自身在全局环境中的相对位置,将自身视作一个质点并与环境有机结合起来。

  导航技术则帮助无人驾驶汽车“知道”自己所要行驶的速度、方向、路径等信息。

  在实际应用中通过信息融合技术将二者组合,从而将环境信息和车身信息融合成一个系统的整体。

  其中高精度地图是无人驾驶实现导航以及后续做路径规划的基础,这些年,卫星导航和基于激光雷达的3D环境建模技术日益成熟,高精度地图测绘质量逐步提升,这为自动驾驶的研发提供了不小的助力。国内高精度地图,以百度地图、高德地图、四维图新等公司为主力;而国外方面,Here、TomTom等公司一直备受称赞。

  (3)无人驾驶路线规划、决策控制;